Codeforces 662C. Binary Table(FWT)
题意:
$给定N\times M的01矩阵,N\le 20,M\le 10^5,每次可以选择flip一行或者一列$
$求最后最少能有几个1$
分析:
$显然每行每列的决定都是翻还是不翻,所以一个很暴力的想法就是二进制枚举其中1个$
$我们得到了一个O(2^nm)的暴力做法,我们来表示一下这个做法$
$f[msk]=\sum_{i=1}^m min(Ones_{col_i \oplus msk}, n - Ones_{col_i \oplus msk} ), msk \in [0, 2^n)$
$事实上我们其实并不关心每个col_i \oplus msk是多少,只关心这些值有哪些,各有多少个$
$换句话说(其实就是往fwt凑),令cnt_k为col_i=k的i有多少,式子变一下$
$f[msk]=\sum_{k \in [0, 2^n) }cnt_k\times min(Ones_{msk\oplus k}, n-Ones_{msk\oplus k}),然后这很卷积。。$
$然后就做完了,时间复杂度O(n 2^n)$
$代码:$
//
// Created by TaoSama on 2016-09-21
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:102400000,102400000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 1e5 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
typedef long long LL;
void fwtXor(LL* a, int len) {
if(len == 1) return;
int h = len >> 1;
fwtXor(a, h);
fwtXor(a + h, h);
for(int i = 0; i < h; ++i) {
LL x1 = a[i];
LL x2 = a[i + h];
a[i] = (x1 + x2);
a[i + h] = (x1 - x2);
}
}
void ifwtXor(LL* a, int len) {
if(len == 1) return;
int h = len >> 1;
for(int i = 0; i < h; ++i) {
// y1=x1+x2
// y2=x1-x2
LL y1 = a[i];
LL y2 = a[i + h];
a[i] = (y1 + y2) / 2;
a[i + h] = (y1 - y2) / 2;
}
ifwtXor(a, h);
ifwtXor(a + h, h);
}
const int C = 1 << 20;
int n, m, a[N];
char buf[N];
LL cnt[C], f[C];
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i) {
scanf("%s", buf);
for(int j = 0; j < m; ++j)
a[j] |= (buf[j] - '0') << i;
}
for(int i = 0; i < m; ++i) ++cnt[a[i]];
for(int i = 0; i < 1 << n; ++i) {
int b = __builtin_popcount(i);
f[i] = min(b, n - b);
}
fwtXor(cnt, 1 << n);
fwtXor(f, 1 << n);
for(int i = 0; i < C; ++i) f[i] *= cnt[i];
ifwtXor(f, 1 << n);
LL ans = INF;
for(int i = 0; i < 1 << n; ++i) ans = min(ans, f[i]);
printf("%I64d\n", ans);
return 0;
}